A Monocapped Octahedral Form of Rh_{7} [Metal Atom] Cluster in the Tetramethylammonium Salt of Hexadecacarbonylheptarhodate Trianion

By V. G. Albano,* P. L. Bellon, and G. F. Ciani

(Istituto di Chimica Generale ed Inorganica, Università degli Studi 21, via G. Venezian, 20133 Milano, Italy)

Summary Hexadecacarbonylheptarhodate trianion, $\left[\mathrm{Rh}_{7}(\mathrm{CO})_{16}\right]^{3-}$, has been found to be a monocapped octahedron of metal atoms with seven terminal, six doublebridging, and three face-bridging carbonyl groups.

Rhodium appears to be unique in giving cluster anions with more than six metal atoms. We are reporting elsewhere the molecular structure of the dianion $\left[\mathrm{Rh}_{12}(\mathrm{CO})_{30}\right]^{2--}$ which consists of two octahedral units connected through a metal-metal bridge. ${ }^{1}$
We report here the results of an X-ray structural investigation on the compound $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{3}\left[\mathrm{Rh}_{7}(\mathrm{CO})_{16}\right]$ which has been recently prepared by Chini and Martinengo. ${ }^{2}$ This salt crystallizes in the orthorombic system with cell constants, from precession photographs and $\mathrm{Mo}-K_{\alpha}$ radiation
$(\lambda=0.7107 \AA), a=24.10(3), b=13.97(2), c=12 \cdot 22(2) \AA$, and $V=4114 \AA^{3}$. The measured density of $2 \cdot 45(5) \mathrm{g}$. $\mathrm{cm} .^{-3}$ agrees with the value of $2.53 \mathrm{~g} . \mathrm{cm} .^{-3}$ computed for $Z=4$. The space group, chosen on the basis of systematic extinctions and of the Patterson map, is Pnma (No. 62); this requires special positions for one cation and for the anion.

Very small crystals were found of sufficiently good quality for diffraction work. The intensities were, accordingly, very low; the set of observed structure factors upon which the present determination is based consists of 550 independent non-zero observations, measured by microdensitometry on precession films.

The structure has been solved by direct methods and refined by block-diagonal least-squares. The metal atoms
were treated anisotropically; because of conspicuous oscillations of oxygen and carbon atoms, constraints ${ }^{3}$ were introduced in the cations which were treated as rigid tetrahedra with $\mathrm{N}-\mathrm{C}$ distances of $1.50 \AA$, and on the CO distances which were given values of $1 \cdot 15 \AA$ for terminal groups and $1 \cdot 19 \AA$ for bridging groups, in agreement with previously found values. ${ }^{1} \quad R$ was 0.071 .
The trianion is shown in Figure 1; the atoms $\mathrm{Rh}(2), \mathrm{Rh}(4)$ and $\mathrm{Rh}(5)$ lie on the mirror plane and atoms $\mathrm{Rh}(1)$ and

Figure 1. A perspective view of the trianion $\left[\mathrm{Rh}_{7}(\mathrm{CO})_{16}\right]^{3-}$.
$\mathrm{Rh}(3)$ are reflected into $\mathrm{Rh}(11)$ and $\mathrm{Rh}(33)$, respectively. Of the 16 carbonyl groups, seven are in terminal positions, one for each metal atom; those bonded to $\mathrm{Rh}(2), \mathrm{Rh}(4)$, and $\mathrm{Rh}(5)$ lie on the mirror. Six groups are bridging on edges (two of them on the mirror) and three more groups are bridged on faces (one on the mirror). There is a formal excess of two electrons with respect to a noble-gas configuration for all the atoms in the cluster; in this respect the present anion does not deviate from the behaviour of the known octahedral clusters of cobalt, ${ }^{4-6}$ rhodium, ${ }^{1,7}$ and ruthenium. ${ }^{8,9}$ With regard to the stereochemistry, there is close similarity between $\left[\mathrm{Rh}_{7}(\mathrm{CO})_{16}\right]^{3-}$ and $\left[\mathrm{CO}_{6}(\mathrm{CO})_{16}\right]^{2-}$ whose ligand distribution can be obtained from that of the present anion by removing $\mathrm{Rh}(5)$ with its terminal CO group and transforming the three double bridges into linearly bonded groups. ${ }^{4,5}$

The metal atoms form the monocapped octahedron shown in Figure 2; this solid consists of an octahedron and a tetrahedron sharing a face. The basal atoms $\mathrm{Rh}(1)$,
$\mathrm{Rh}(11)$ and $\mathrm{Rh}(4)$ form a regular triangle, with $\mathrm{Rh}-\mathrm{Rh}$ distances of $2 \cdot 72(1) \AA$, and are eight-fold co-ordinated by four metal atoms and four CO groups. Atoms $\mathrm{Rh}(2), \mathrm{Rh}(3)$, and $\mathrm{Rh}(33)$, nine-fold co-ordinated by five metal atoms and four CO groups, also define a regular triangle with $\mathrm{Rh}-\mathrm{Rh}$ distances of $2 \cdot 77$ (1) \AA. The two triangles are parallel, and in projection $\mathrm{Rh}(5)$ is at the centre of both. The resulting arrangement may be considered as a fragment of a metallic close packing; its ideal $C_{3 v}$ symmetry is destroyed by small

Figure 2. Metal cluster in $\left[\mathrm{Rh}_{7}(\mathrm{CO})_{16}\right]^{3-}$ with independent $\mathrm{Rh}-\mathrm{Rh}$ distances. Individual e.s.ds ave $0.01 \AA$. The arrows indicate the displacements of $\mathrm{Rh}(5)$ and of the centres of the two triangles from the ideal C_{3} axis.
displacements of the centres of the two triangles, and of $\mathrm{Rh}(5)$, from the C_{3} axis, so that there remains only the C_{s} symmetry dictated by the space group.

As for the metal-carbon interactions, the following mean distances are found for terminal groups $1 \cdot 82 \AA$, for doublebridging groups $1 \cdot 97 \AA$, and for face-bridging groups $2 \cdot 14 \AA$. Although the constraints assumed in the refinement for the $\mathrm{C}-\mathrm{O}$ distances make the assignment of e.s.ds to individual and mean $\mathrm{Rh}-\mathrm{C}$ distances problematical, the present results seem reasonable in the light of previously determined values ${ }^{1}$ in $\left[\mathrm{Rh}_{12}(\mathrm{CO})_{30}\right]^{2-}$.

This work has been supported by the Italian Consiglio Nazionale delle Ricerche. We thank V. Scatturin and P. Chini for their interest in this research and for a number of discussions.
(Received, July 7th, 1969; Com. 992.)

[^0]
[^0]: ${ }^{1}$ V. Albano and P. L. Bellon, J. Organometallic Chem., in the press.
 ${ }^{2}$ P. Chini and S. Martinengo, Chem. Comm., 1969, in the press.
 ${ }^{3}$ V. Albano, P. L. Bellon, and M. Sansoni, Ricerca Sci., 1968, 38, 972.
 ${ }^{4}$ V. Albano, P. Chini, and V. Scatturin, Chem. Comm., 1968, 163.
 ${ }^{5}$ V. Albano, P. Chini, and V. Scatturin, J. Organometallic Chem., 1968, 15, 423.
 ${ }^{6}$ V. Albano, P. L. Bellon, P. Chini, and V. Scatturin, J. Organometallic Chem., 1969, 16, 461.
 ${ }^{7}$ E. R. Corey, L. F. Dahl, and W. Beck, J. Amer. Chem. Soc., 1963, 85, 1202.
 ${ }^{8}$ R. Mason and W. R. Robinson, Chem. Comm., 1968, 468.
 ${ }^{\ominus}$ A. Sirigu, M. Bianchi, and E. Benedetti, Chem. Comm., 1969, 596.

